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Products & Services Goal

Seamless probabilistic forecasts for all lead times
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Why hydrologic ensemble forecasting?

Provide an estimate of the forecast (i.e. predictive) uncertainty

— Confidence information (for the forecasters)
— For user-specific risk-based decision-making (for the customers)
Improve forecast accuracy

— An (optimally weighted) average of two good (or bad) forecasts is
better than either of the two

Extend forecast lead time

— Weather and climate forecasts are highly uncertain and noisy; they
cannot practically be conveyed as single-valued

Cost-effective improvement of forecast systems, science and process




NWS Hydrologic Ensemble Forecast
System (HEFS)

An end-to-end hydrologic ensemble forecast system currently under
development

Comprehensive plan developed in 2007
(http://www.weather.gov/oh/rfcdev/docs/XEFS design_gap analysis_report_fi
nal.pdf)

NWS/OHD collaborating with RFCs, Deltares, NCEP, OAR and universities
through:

» Advanced Hydrologic Prediction Service (AHPS)
» Climate Prediction Program for the Americas (CPPA) Core Project
» The Observing-System Research and Predictability Experiment (THORPEX)
» The Hydrologic Ensemble Prediction Experiment (HEPEX)
» Research grants
Field deployment via the Community Hydrologic Prediction System (CHPS)

Prototype components under testing and evaluation at a number of RFCs

Additional prototype deployments during the next 2 years



Current (Seasonal ESP) vs. HEFS

Platform

National Weather Service River
Forecast System (NWSRFS)
(inflexible, outdated)

Community Hydrologic
Prediction System (CHPS)
(flexible, SOA)

Forecast horizon

Weeks to seasons

Hours to years

Input forecasts

Climate outlook forecasts

Short-, medium- and long-range
forecasts (HPC/RFC, GFS,
CFS, SREF)

products

Hydrologic Not addressed Addressed (but w/ room for
uncertainty improvement)
Products Limited number of graphical A wide array of user-tailored

products via Web-enabled
interactive toolbox




Uncertainty integration strategy
ha14,) =] 1i(a, 1a,05,) fi(s,1q,) ds,

Predictive Residual hydrologic Uncertainty in
uncertainty in uncertainty model-predicted
streamflow streamflow

where q; Streamflow at some future times
g, Observed flow up to and including the current time
s; Model-predicted streamflow at the future times

Krzysztofowicz (1999)

£ la)=[[[fiCs, 1boispaa,) fiby1ipaa,) fi(plisa,) fi(ila,) db, di dp

Uncertainty in Conditional hydrologic Future forcing Parametric [nitial condition
model-predicted model simulation uncertainty uncertainty uncertainty
streamflow

where b; Future boundary conditions (precipitation, temperature)
| Initial conditions

p Model parameters

Seo et al. (2000)



Uncertainty integration strategy (cont.)

w/o data assimilator and parametric uncertainty processor

harla) =] 1, 14,5, fi(s,q,) ds,

Predictive Residual hydrologic Uncertainty in
uncertainty in uncertainty model-predicted
streamflow streamflow

where ¢; Streamflow at some future times
g, Observed flow up to and including the current time
s; Model-predicted streamflow at the future times

£i(s,1a)=[fils, 1b,) fi(b,) db,

Uncertainty in Conditional Future
model-predicted hydrologic model forcing
streamflow simulation uncertainty

where b; Future boundary conditions (precipitation,
temperature)



Strategy for forcing ensembles

 Current

— Generate ensembles statistically from the single-
valued QPF and QTF

- HPC/RFC, GFS, CFS

« Ensemble Pre-Processor (EPP)
— Schaake et al. (2007), Wu et al. (2010)

* Near-term plan
— (Post-processed) Multi-model ensembles

« Currently in experimental operation at some
RFCs using MMEFS

— Include potential evaporation




Strategy for hydrologic uncertainty modeling

 Current

— Lump all hydrologic uncertainties into one and
model it stochastically (Seo et al. 2007)

* Near-term plan
— Uncertainty modeling of regulated flows

— Initial condition uncertainty via ensemble data
assimilation

— Parametric uncertainty via the parametric
uncertainty processor

— Multimodel ensembles




Verification Results: EPP-ESP-EnsPost flow
forecast compared to climatological ESP

Skill Score for Mean CRPS
(CRPSS): GFS-based flow
generated by EPP-ESP-EnsPost _ oo one Sean
compared to GFS-based flow
(EPP-ESP) and climatology-based
flows (climatological ESP)

Higher scores: better

0.6

0.5

gain from EPP

0.4

gain from EnsPost

CRPSS

Very large improvement by EPP- --
ESP over climatological ESP

...........
A ———

1 2 3 45 6 7 8 910 12 14
Lead time (days)

Significant improvement by EPP-
ESP-EnsPost over EPP-ESP
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Operational hydrologic ensemble
forecasting - Challenges

Appropriately model and integrate uncertainties introduced from data, model, and
human sources

Combine ensemble forcing for short, medium, and long ranges from multiple
sources

Maintain spatiotemporal relationships across different scales
Include forecaster skill in short-term inputs (QPF, temperature, etc.)
Include forecaster guidance of hydrologic model operation

Maintain coherence between deterministic and ensemble forecasts

Provide uncertainty information in a form and context that is easily
understandable and useful to the customers

Reduce the cone of uncertainty for effective decision support
— Improve accuracy of meteorological and hydrologic models

Improve uncertainty modeling and observations of rare and extreme events (e.g.
record flooding, drought)

— Extreme conditions may be outside of model limits and without historical

analog Adapted from
Greatly improve computing, database and data storage capabilities  Hartman (2007)
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Collaborative R&D and RTO in the
CHPS environment

-

~

New Science
& Technology

(researchers from
OHD, RFC, and
broader scientific

\_

community)

/

440

Prototypes

EPP3

ESP2

HMOS

EnsPost

EVS

1DVAR

4DVAR

2DVAR

AB_OPT

New Model 1

New Model 2

————————————————————————————————————————————————————————————————————————

HEFS

Prototype

Community Hydrologic Prediction
System (CHPS)

________________________________________________________________________



Thank you
For more information:
julie.demargne@noaa.gov



Hyperlinked slides
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Provide an actionable estimate of the
forecast (i.e. predictive) uncertainty
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Mean Error (cfs)

In single-valued forecast process, “hydrologic
error-tolerable” lead time for QPF is very limited
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Uncertainties in hydrologic forecast

t Quantify meteorological/Input uncertainty

Reduced uncertainty due to pre-processing

Quantify parametric uncertainty

Uncertainty

Reduced uncertainty due to calibration

Quantify uncertainty in initial conditions

Reduced uncertainty due to data assimilation

Lead Time

Structural uncertainty,
residual uncertainty

Flow regulations




Hydrologic Ensemble Forecast System (HEFS)

_____________________________________________________________________________________________________________
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HEFS will enable seamless hydrologic ensemble prediction from weather to climate scales

and translate weather and climate prediction into uncertainty-quantified water information
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HEFS Field Testing

CHNRFS
CBRFC

Ensemble Pre-Processor

Hydrologic Model Output
Statistics (HMOS)
Ensemble Processor

Ensemble Post-Processor

Ensemble Verification
System

EC
WMBRFC
NCRFC
WMARFC
‘ ‘
= ARRFC
LMRFC
= b SERFC
WGERFC =
{ﬁ!”‘ D3
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EPP-generated precipitation ensembles

Reliability diagrams for ensemble hindcasts of 6-hr precipitation for all 6-hr periods in
Day 1 for Huntingdon in central PA. The vertical bars denote 95% confidence interval.
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EPP-generated precipitation ensembles (cont.)

Mean CRPS for ensemble hindcasts of 6-hr precipitation for all 6-hr periods
in Day 1 for Nov through Apr. The results are for the North Fork of the
American River in CA, with upper and lower areas combined. The vertical
bars denote the 95% confidence intervals.

MAP =0 mm
1.2¢ JF
1 L
2
S 08l * o %
@)
c 0.6
S X  Method 1 (DV)
= 04 «  Method 2 (DV)
O Method 2 (CV)
0.2 %  Method 3 (DV)
+ SVF
0

Mean CRPS

MAP = 6.35 mm

From Wu et al. (2010)

MAP > 12.7 mm

+
i
a0

7 10
6 JF gl
| { x
4 * o
cC
3" X Method 1 (DV) S
2| «  Method 2 (DV) =
O  Method 2 (CV)
1t *  Method 3 (DV)
+ SVF
0 0

X Method 1 (DV)
Method 2 (DV)
Method 2 (CV)
Method 3 (DV)
SVF

+ %0 -

21




FLOW (CMS)
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In general, the post-processed ensemble members
consistently encompass the verifying observation, and the
ensemble mean closely resembles the single-valued forecast
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Verification of post-processed streamflow
ensembles — daily flow
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Verification of post-processed streamflow
ensembles — monthly flow
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In general, post-processed streamflow ensembles are reliable

and as skillful, in the mean sense, as the operational single-

valued forecast over a range of temporal scale of aggregation a|
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Errors in Climatological ESP Forecast (Day 1)
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Errors in GFS-based EPP-ESP-EnsPost Flow
Forecast (Day 1)
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End of slides
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